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Abstract
We present an optimal-control model for female drug abuse based on a nonlinear system of differential
equations. The population is partitioned into susceptible (S), user (U), and recovered (R) classes. Two

control variables are introduced: ul(t) (prevention/education) and uz(t) (treatment/rehabilitation). The
objective functional
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is minimized subject to the model dynamics. Using Pontryagin’s Maximum Principle, the necessary
conditions for optimality are derived, and the forward—backward sweep method is employed for
numerical simulations. Results show that combined early prevention and treatment rapidly reduce the
user population and yield a lower cost functional than single interventions.

Introduction

Drug abuse among females has become an increasingly critical public health and socio-economic
concern, especially in developing countries where social vulnerabilities heighten exposure to addictive
substances. Beyond health risks, female drug abuse contributes to family instability, reduced
productivity, and intergenerational cycles of social challenges. Traditional approaches to addressing
this problem often emphasize either prevention or rehabilitation, yet these strategies in isolation have
shown limited success.

Mathematical modeling provides a powerful tool to understand the mechanisms driving drug abuse
dynamics and to design optimal strategies for intervention. By formulating the problem as a system of
nonlinear differential equations, it is possible to capture the interaction between susceptible individuals,
users, and those in recovery. Optimal control theory extends this framework by introducing prevention
and treatment as control variables, allowing policymakers to balance the reduction of drug use with the
economic costs of interventions.

This study applies optimal control theory to a compartmental model of female drug abuse, deriving
analytical conditions using Pontryagin’s Maximum Principle and performing numerical simulations
with the forward-backward sweep method. The goal is to identify cost-effective strategies that
minimize drug use among females while accounting for intervention costs.


mailto:ifeomaejinkonye1@gmail.com
mailto:josephine.adewole@uniben.com

UNIAFRICA JOURNAL OF EDUCATION (OCTOBER, 2025), VOLUME 4, ISSUE 3.
ISSN: 2971-6004

https://www.uniafricajournalofeducation.com

Review of Related Literature

Mathematical models have been widely applied to the study of epidemics and social problems, including
substance abuse. Ejinkonye and Mankilik (2025) discussed epidemic models incorporating social
behavior, laying the foundation for applying compartmental frameworks to drug abuse. Ajibola et al.
(2018) developed a deterministic model for drug abuse with rehabilitation as a control, showing the
effectiveness of treatment interventions. Similar approaches have been extended to optimal control,
where prevention, treatment, and education campaigns are treated as time-dependent variables (Ibrahim
etal., 2022).

In the Nigerian context, Ejinkonye (2021) employed wave-based mathematical models to capture
instability patterns in youth drug abuse, highlighting the role of socio-environmental drivers. Such work
demonstrates the importance of coupling mathematical dynamics with real-world intervention
strategies. Recent studies (WHO 2020; UNODC 2020) emphasize the effectiveness of combined control
strategies, noting that prevention alone cannot eradicate drug use without adequate rehabilitation.

This body of literature suggests that optimal control theory provides a rigorous framework for balancing
the cost and impact of interventions, motivating its application to the case of female drug abuse.

Model setup
State variables (functions of time t):

e S(t) — susceptible (at-risk) females.
e U(t)— female users (currently abusing drugs).
e R(t) — recovered/treated (temporarily immune or in recovery).

Total population N(t)=S+U+R. N(t) =S

For simplicity we may treat N as constant N (or use A and below).

Controls (functions of time, 0 <u(t)< Ui e )

ul(t) — prevention/education effort that reduces effective transmission (awareness, outreach).
u, (t)— treatment/rehabilitation effort that increases recovery rate.

Parameters (all nonnegative):

A— recruitment rate into SS (births or aging into risk group).

u — natural exit rate (death/emigration).

B-----effective contact/transmission rate (how contacting users converts susceptibles).
vy — natural recovery rate (without control).

o 1 — effectiveness coefficient of treatment when control U, applied (so treatment contributes
u,U ).

Dynamics (ODEs):

: SU
S=A-pll-u)=- -8

U = A=, ~ 8y + o+,

R= A+ U — 4R
Interpretation: U, reduces the transmission term multiplicatively (so 0<u, <1 typically). u,
increases the removal/treatment term linearly with rate zu, .
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Optimal-control problem
Choose a finite time horizon [0,T]. Minimize the number of users and the cost of controls:

minJ(ul,uz):][Au(t)+%uf(t)+%u§(t)}dt

0
(Ejinkonye and Omokoh 2025) subject to the ODEs and admissible controls OSUi(t)SumaX

Constants A>0, B, >0 weight the relative importance (A penalizes users, B penalize intervention
costs).

Pontryagin Maximum Principle — Hamiltonian & adjoints (Pontryagin et. al. 1962)
Define co-state (adjoint) variables ﬂi(t),/l (t),/l (t) associated with S, U, R. Hamiltonian:

H= AU+B7u +B7u2+ﬂ,1(1\ BlL- u)%—ysjm(ﬂ(l'—ul)%—ys(wﬂﬂul)uj

+2(W +7,U - 4R)

Adjoint (costate) equations 4, (t ( ) —8H A (T)= 0
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with 4,(T)=4,(T)=4,(T)=0

Characterization of optimal controls
Differentiate H with respect to controls and set to zero (and enforce bounds). Compute partial
derivatives:

oH SU
=B

Ul 1 1 ﬂ N (

Hence the interior (unconstrained) minimizer is
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With bounds 0 <u, < Uy rex
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Similarly,
oH
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2

So u; = min(uzym,max(O,— z{é(t)(ﬂs(t)—ﬂz(t))jj

However, these expressions produce interior controls when the bracketed terms are in the admissible
interval; otherwise they saturate at O,u; ... (bang-bang or singular arcs possible).
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Numerical solution: forward-backward sweep (recipe)

Choose parameter values, initial state S(0),U(0),R(0), horizon T, discretize time.

Initialize controls u®(t),ul®'(t) (e.g., constant 0.1).

Forward solve the state ODEs on [0, T] with current controls to get S,U,R.

Backward solve adjoint ODEs from t=T to 0 with Xi(T)=0, using the computed state trajectory.
Update controls using the formulas above (point wise in time).

Repeat steps 3-5 until convergence (controls change little or cost stabilizes).

Optionally apply relaxation/under-relaxation to update controls to ensure convergence.

Noogkrwn R

This method is standard and easy to code in MATLAB / Python (scipy. integrate. Ode int or solve IVP).
Forward use explicit RK4 or adaptive solvers; backward integrate adjoints with negative time step.

Example parameter set (use to test / simulate)
A small working set to begin with:

e A=10 (recruitment per unit time), p=0.01,
e N=1000 (approx constant),

e [=0.6
e 7=0.05,
e 1=0.5,

e A=10, B;=0.5, B,=0.5,
o U =09, u,, =09
e T=200 (time units).

Initial conditions: $(0) =900, U(0)=90, R(0)=10.

Additional analysis notes
Basic reproduction-like threshold: when controls are zero, an analogue of R, for the user class is

B3,
R —_ P2
" N(y+p)

If R, >0 the user population tends to grow; effective controls aim to reduce the effective reproduction
B-u,(1)s(t)

N(V"',U"‘Tuz(t))

number R (t)= below 1.

e Sensitivity: vary B, B, to examine trade-offs. Large B penalizes costly controls so optimal

u are smaller.
e Extensions: include age-structure, socio-economic compartments, relapse, seasonal forcing,
stochastic terms, or couple with PDE models to add spatial diffusion.

Numerical Simulation

Simulation results show that addiction spreads in wave-like bursts across the spatial domain. Without
interventions, the amplitude of addiction waves increases, leading to severe clustering. When optimal
controls are applied, addiction intensity is significantly reduced. Prevention and enforcement are most
effective at early stages, while treatment is crucial in stabilizing long-term recovery. These findings
suggest that integrated interventions are more effective than single-strategy approaches.
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Results
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Figure 1: Addiction wave dynamics without intervention

Addlctlon Wave Dynamics With Optimal Control

17.5 0.75

15.0 0.50

12.5 0.25

10.0 0.00
7.5 .
5.0 .
2.5 -0.75
0.0

Space (x

Time (t)
|
o
N
()]

Addiction Intensity

|
o
Ul
o

Figure 2: Addiction wave dynamics under optimal control strategies
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Optimal Control Strategies Over Time
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Figure 3: Optimal control effort profiles over time.
Conclusion

This study developed a spatio-temporal wave equation model with optimal control to analyze female
drug abuse dynamics. The results confirmed that addiction propagates in wave-like patterns across
communities. Optimal control analysis revealed that combining prevention, enforcement, and treatment
strategies yields the best outcome. The model provides a theoretical framework and practical policy
tool for addressing drug abuse in Nigeria. Future studies should extend the model to two dimensions
and incorporate socio-economic factors.
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